Content

Tutoríal 9 ---Chan Ki Fung

## BACK

## **Questions of today**

1. There are some generalizations of Schwarz lemma:

a. Let f be holomorphic on  $\mathbb D$  and suppose that  $|f(z)| \leq M$  for all  $z \in \mathbb D$ . Suppose  $lpha_1, lpha_2, \ldots lpha_n \in \mathbb D$  with  $f(z_k) = 0$ . Show that

$$|f(z)| \leq M \prod_{k=1}^n rac{|z-lpha_k|}{|1-\overline{lpha_k}z|}$$

b. (Schwarz-Pick) Let  $f:\mathbb{D} o\mathbb{D}$  be holomorphic. For  $a,b\in\mathbb{D}$ , show that

$$\left|rac{f(a)-f(b)}{1-\overline{f(a)}f(b)}
ight|\leq \left|rac{a-b}{1-\overline{a}b}
ight|$$

2. There are some statements making use of the fact that the Caylay transform

$$z\mapsto rac{z-i}{z+i}$$

from the upper half plane  $\mathbb{H}$  to the unit disc  $\mathbb{D}$ .

- a. Any entire map f with  $\operatorname{Re}(f)$  bounded below is constant.
- b. Let  $\mathcal{F}$  be a family of function on a region  $\Omega$  such that the real parts of  $\mathcal{F}$  are bounded below, then  $\mathcal{F}$  is normal.
- c. (Borel–Carathéodory) Let f be a holomorphic function defined on the closed unit disc $D_R = \{z : |z| \le R\}$ . Show that, for r < R,

$$\sup_{|z|\leq r} |f(z)| \leq rac{2r}{R-r} \sup_{|z|\leq R} \mathrm{Re}f + rac{R+r}{R-r}f(0).$$

- 3. Suppose  $\{f_n\}$  is a sequence of holomorphic functions on  $\Omega$ , and  $f_n \to f$  uniformly on compact subset. Show that f is holomorphic and  $f_n^{(k)} \to f^{(k)}$  for any positive integral k.
- 4. (Hurwitz) Let  $\Omega$  be a region (so it is connected), and  $\{f_n\}$  a sequence of holomorphic functions on  $\Omega$ . Suppose  $f_n \to f$  uniformly on compact subsets, show that either  $f \equiv 0$  or f is nowhere vanishing.
- 5. (Vitali) Let  $\{f_n\}$  be a locally bounded sequence of holomorphic functions on  $\Omega$ , and f is a holomorphic function on  $\Omega$ . Suppose the set  $A = \{z \in \Omega : f_n(z) \to f(z)\}$  has a limit point in  $\Omega$ , show that  $f_n \to f$  uniformly on compact subsets.

## Hints & solutions of today

